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Irregularities in intracellular traffic in axons caused by mutations of molecular motors may lead to ‘‘traffic
jams”, which often result in swelling of axons causing various neurodegenerative diseases. The purpose of
this paper is to suggest a model of the formation of traffic jams in axons during molecular-motor-assisted
transport of intracellular organelles utilizing transport equations developed in Smith and Simmons [D.A.
Smith, R.M. Simmons, Models of motor-assisted transport of intracellular particles, Biophys. J. 80 (2001)
45–68], which describe the motion of intracellular particles under the combined action of diffusion and
motor-driven transport. According to this model, large intracellular organelles are transported in the
cytoplasm by a combined action of diffusion and motor-driven transport. In an axon, organelles are trans-
ported away from the neuron’s body toward the axon’s terminal by kinesin-family molecular motors run-
ning on tracks composed by microtubules; old and used components are carried back toward neuron’s
body by dynein-family molecular motors. Binding/detachment kinetic processes between the organelles
and microtubules are specified by first rate reaction constants; these lead to coupling between the three
organelle concentrations.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Neurons are highly specialized cells that have long arms (pro-
cesses). If the arm transmits electrical signals, it is called an axon,
whereas if it receives electrical signals, it is called a dendrite
(Fig. 1) [1]. Axons in a human body can be up to one meter in
length. Axons support little synthesis of proteins or membrane,
therefore materials must be constantly imported from the synthet-
ically active cytoplasm of the cell body ([2]) and transported to
arms’ terminals. Diffusion is not a sufficiently fast mechanism for
transporting large intracellular particles (organelles), such as large
protein particles or intracellular vesicles carrying different types of
cargo. This is because according to Einstein’s relation that deter-
mines the diffusivity of small particles due to the Brownian mo-
tion, the diffusivity is inversely proportional to the particles’
radius, which means that larger particles have smaller diffusivity.
To overcome the diffusion limitation, intracellular transport in ax-
ons and dendrites relies on the ‘‘railway system”: large intracellu-
lar particles attach themselves to molecular motors (specialized
proteins that as a result of a chemical process, usually ATP hydro-
lysis, undergo conformational changes ‘‘walking” along intracellu-
lar filaments, such as microtubules) that transport them along
microtubules.

All microtubules (MT) in an axon have the same polarity (their
plus ends point toward the axon terminal); the microtubules do
ll rights reserved.
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not stretch the entire length of the axon so that the continuous
path along the axon is composed by short overlapping segments
of parallel microtubules. Transport vesicles loaded with specific
proteins are carried away from the neuron body toward the syn-
apse (the axon terminal) by kinesin-family molecular motors (this
family of molecular motors is responsible for the transport on
microtubules toward their plus-ends). Used and old intracellular
organelles are carried from the axon terminal toward the body of
the neuron by dynein-family molecular motors (this family of
molecular motors is responsible for the transport on microtubules
toward their minus-ends). In dendrites the microtubule polarities
are mixed; some of them point their plus ends toward the dendrite
tip and some point those toward the neurons’ body. Therefore, in a
dendrite, depending on the polarity of a particular microtubule,
transport in a certain direction (to the neuron’s body or away from
it) can be carried out by either kinesin or dynein molecular motors
([1,3]).

Irregularities in intracellular traffic in axons caused by muta-
tions of molecular motors may lead to ‘‘traffic jams”, which may re-
sult in swelling of axons causing various neurodegenerative
diseases ([2,4,5]). Hurd and Saxton [2] published electron micro-
graphs of cross-sections through axonal swellings. The micrographs
show that the swellings, caused by traffic jams induced by a
mutation of a gene encoding the force-producing heavy chain of
the kinesin molecular motor, are packed with mitochondria, large
multi-vesicular bodies, and other types of intracellular organelles.

The purpose of this paper is to suggest a model of the formation
of traffic jams in axons during molecular-motor-assisted transport
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Nomenclature

D0 dimensionless diffusivity of a free particle,
eD0

~kþ
~m2
þ

eD0 diffusivity of a free particle
k� dimensionless binding rate to microtubules for particles

that move in the negative direction,
~k�
~kþ~k� first order rate constants for binding to microtubules for

particles that move in the positive (+) and negative (�)
directions, respectively

k0� dimensionless detachment rate from microtubules for
particles that move in the positive (+) and negative
(�) directions, respectively,

~k0�
~kþ

k0�0 dimensionless detachment rate from microtubules for
particles that move in the positive (+) and negative
(�) directions for the case when concentration of parti-
cles riding on microtubules is very low

~k0� first order rate constants for detachment from microtu-
bules for particles that move in the positive (+) and neg-
ative (�) directions, respectively

L dimensionless axon length,
eL~kþ
~vþ

eL axon length
n0 dimensionless free particle concentration, ~n0

~m3
þ

~k3
þ~n0 free particle concentration

n± dimensionless concentration of particles moving on
microtubules in the positive (+) and negative (�) direc-
tions, respectively, ~n�

~m3
þ

~k3
þ

~n± concentration of particles moving on microtubules in
the positive (+) and negative (�) directions, respectively

N0 dimensionless concentration of free particles main-
tained at x ¼ 0; eN0

~m3
þ

~k3
þ

eN0 constant concentration of free particles maintained at
~x ¼ 0

NL dimensionless concentration of free particles main-
tained at x ¼ L; eNL

~m3
þ

~k3
þ

eNL constant concentration of free particles maintained at
~x ¼ eL

~t time
v� dimensionless velocity of a particle moving on a micro-

tubule toward the cell body, ~v�
~mþ

v�0 dimensionless velocity of a particle moving on a micro-
tubule in the negative (�) direction for the case when
concentration of particles riding on microtubules is very
low

~v� velocity of a particle moving on a microtubule in the po-
sitive (+) and negative (�) directions, respectively

x dimensionless particle displacement in the axon, ~x~kþ
~vþ

~x particle displacement in the axon

Greek symbols
r0 degree of loading at ~x ¼ 0
rL degree of loading at ~x ¼ eL
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of intracellular organelles utilizing transport equations developed
in Smith and Simmons [6] which describe motion of intracellular
particles under the combined action of diffusion and motor-driven
transport. According to this model, the organelle either diffuses
freely in the cytosol or moves on a filament at a motor velocity;
the organelle can bind to or detach from a filament. Depending
on the type of a molecular motor (or several motors) attached to
the particle, the motion along the microtubule can occur in either
direction. Dinh et al. [7] presented numerical solutions of Smith–
Simmons equations to describe intracellular trafficking of adenovi-
ruses between the cell membrane and cell nucleus. Other relevant
Fig. 1. Schematic diagram of a neuron cell with a dendrite and axon; also, a traffic
jam in the axon resulting from crowding of organelles at a certain location in the
axon.
aspects of intracellular transport of cell organelles and vesicles
along microtubules are considered in [8–15].

2. Governing equations

The molecular-motor-assisted transport equations suggested in
Smith and Simmons [6] are

o~n0

o~t
¼ eD0

o2~n0

o~x2 � ð
~kþ þ ~k�Þ~n0 þ ~k0þ~nþ þ ~k0�~n� ð1Þ

o~nþ
o~t
¼ ~kþ~n0 � ~k0þ~nþ �

oð~vþ~nþÞ
o~x

ð2Þ

o~n�
o~t
¼ ~k�~n0 � ~k0�~n� �

oð~v�~n�Þ
o~x

ð3Þ

where eD0 is the diffusivity of a free particle; ~t is the time; ~n0 is the
free particles concentration; ~n+ is the concentration of particles
moving on microtubules in the positive direction (away from the
cell body); ~n� is the concentration of particles moving on microtu-
bules in the negative direction (toward the cell body); ~x is the linear
coordinate along the axon; ~v� is the velocity of a particle moving on
a microtubule toward the cell body (in an axon this is the motor
velocity generated by a dynein-family molecular motor), ~v� is neg-
ative; ~vþ is the velocity of a particle moving on a microtubule away
from the cell body (in an axon this is the motor velocity generated
by a kinesin-family molecular motor), ~vþ is positive; ~kþ and ~k� are
the first order rate constants for binding to microtubules for parti-
cles that move in the positive and negative directions, respectively;
and ~k0þ and ~k0� are the first order rate constants for detachment from
microtubules for particles that move in the positive and negative
directions, respectively. Eqs. (1)–(3) to be solved subject to the fol-
lowing boundary conditions:

~x ¼ 0; ~n0 ¼ eN0; ~nþ ¼ r0
eN0 ð4Þ

~x ¼ eL; ~n0 ¼ eNL; ~n� ¼ rL
eNL ð5Þ
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where eN0 and eNL are fixed concentrations of particles at ~x ¼ 0 and
~x ¼ eL, respectively; and r0 and rL are the degrees of loading at
~x ¼ 0 and ~x ¼ eL, respectively.

Since the time scale for the development of neurodegenerative
diseases (for the formation of traffic jams) is large, the transient
terms in Eqs. (1)–(3) are neglected, and axonal transport is consid-
ered at steady-state conditions.

According to the Pi theorem, the maximum variable reduction is
equal to two (the number of dimensions describing the variables,
length and time). Dimensionless variables are introduced as
follows:

D0 ¼
eD0

~kþ
~m2
þ0

; k� ¼
~k�
~kþ
; k0� ¼

~k0�
~kþ
; L ¼

eL~kþ
~vþ0

; n0 ¼ ~n0
~m3
þ0

~k3
þ

ð6Þ

n� ¼ ~n�
~m3
þ0

~k3
þ

; N0 ¼ eN0
~m3
þ0

~k3
þ

; NL ¼ eNL

~m3
þ0

~k3
þ

; v� ¼
~v�
~mþ0

; x ¼
~x~kþ
~vþ0

ð7Þ

In order to simulate traffic jams in axons, two physical modeling ap-
proaches are investigated

1. The increase of concentration of particles riding on microtu-
bules results in decreasing the molecular motor velocity; this
behavior may be related to mutations of genes coding the struc-
ture of molecular motors. The slowdown is modeled here by the
exponential functions:

~vþ ¼ ~vþ0 expð�AnþÞ; ~v� ¼ ~v�0 expð�An�Þ ð8Þ

where ~vþ0 and ~v�0 are values of ~vþ and ~v� for the case when con-
centration of particles riding on microtubules is very low.

2. Alternatively, it may be a better physical approach to assume
that molecular motor velocity is independent of particle con-
centration (this is done by setting A = 0 in Eq. (8)), but as num-
ber densities of organelles riding on microtubules (n+ and n�)
increase, the probability of them falling off the microtubules
and becoming free particles increases. Indeed, molecular
motors operate in a very noisy environment (constantly experi-
encing thermally excited collisions with water molecules);
organelles with attached molecular motors compete for the
same space close to the microtubule [16]. Therefore, it is rea-
sonable to assume that the increase of number density concen-
tration of intercellular particles riding on a microtubule results
in larger probability for a molecular motor to fall off the micro-
tubule thus increasing the detachment rate constants, ~k0�. This is
modeled by representing the detachment rate constants as:

k0þ ¼ k0þ0 expðBnþÞ; k0� ¼ k0�0 expðBn�Þ ð9aÞ

where k0þ0 and k0�0 are values of k0þ and k0� for the case when con-
centration of particles riding on microtubules is very low.This
should be particularly true in the regions occupied by axonal
Table 1
Dimensionless parameters utilized in computations

Parameter Description

D0 Diffusivity of free particles
k� Binding rate to microtubules for particles that move in the negative dire
k0�0 Detachment rate from microtubules for particles that move in the positi

particles riding on microtubules is very low
L Axon length
N0 Concentration of free particles at x = 0
NL Concentration of free particles at x = L
v�0 Motor speed of a particle moving on a microtubule in the negative (�) d

microtubules is very low
r0 Degree of loading at x = 0
rL Degree of loading at x = L
swelling. An organelle-filled axonal swelling can be modeled
by locally increasing the value of constant B in the region occu-
pied by the swelling. For example, if the swelling is located in
the region x1 6 x 6 x2, this can be modeled by the following step
function:

0 6 x < x1 and x1 < x 6 x2 : B ¼ 0 ð9bÞ
x1 6 x 6 x2 : B ¼ B0 ð9cÞ

where B0 is a positive constant.

Under these assumptions, the dimensionless steady-state govern-
ing equations are

D0
d2n0

dx2 � ð1þ k�Þn0 þ k0þ0 expðBnþÞnþ þ k0�0 expðBn�Þn� ¼ 0 ð10Þ

n0 � k0þ0 expðBnþÞnþ �
dðexpð�AnþÞnþÞ

dx
¼ 0 ð11Þ

k�n0 � k0�0 expðBn�Þn� � v�0
dðexpð�An�Þn�Þ

dx
¼ 0 ð12Þ

The dimensionless boundary conditions are

x ¼ 0; n0 ¼ N0; nþ ¼ r0N0 ð13Þ
x ¼ L; n0 ¼ NL; n� ¼ rLNL ð14Þ

The dimensionless flux of intracellular organelles is

j ¼ �D0
dn0

dx
þ expð�AnþÞnþ þ v�0 expð�An�Þn� ð15Þ

By adding Eqs. (10)–(12) and integrating the result once with re-
spect to x it is readily proven that for the steady-state situation j
is a constant (independent of x).

Finite difference approximation is used to solve the non-linear
system of equations, i.e., Eqs. (10)–(12), iteratively subject to the
appropriate boundary conditions, i.e., Eqs. (13) and (14). As seen,
two boundary conditions are available for the second order differ-
ential equation, Eq. (10), when solved for n0. On the other hand,
while one of the first order equations, Eq. (11), has its only bound-
ary condition at x = 0, the other one, when solved for n�, is solved
subject to a known value at the other end of the axon, i.e., at x = L.
Hence, Eq. (10) is discretized by a central difference scheme (CDS)
while a forward/backward one is implemented for Eqs. (11) and
(12). Uniform grids of size Dx = 0.02 are used. Grid independence
is verified by running the most stringent cases (associated with
the highest B or the lowest A values) on different grid sizes. It is ob-
served that moving Dx from 0.02 to 0.01, the change in the results
is less than 1%. The convergence criterion (maximum relative error
in the values of the dependent variables between two successive
iterations) in all runs is set at 10�7. As a test on the accuracy of
the numerical procedure the results are compared (successfully)
with those obtained by a numerical solution of the same equations
Value

0.4
ction (toward the cell body) 1
ve (+) and negative (�) directions for the case when concentration of 0.5

20
0.1
0.01

irection for the case when concentration of particles riding on �1

0.1
0.1
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Fig. 2. Effect of slowing down the molecular-motor assisted transport along
microtubules (see Eq. (8)) on number density concentrations of free particles, n0 (a),
particles riding on microtubules toward the neuron body, n� (b), and particles
riding on microtubules away from the cell body, n+ (c). Computed for B = 0.

Table 2
Effect of the traffic jam due to velocity decrease at larger concentration of organelles
riding on microtubules on the flux of the organelles toward the axon terminal,
computed for B = 0

A j

0 0.0087
0.1 0.0086
1 0.0083
7 0.0063
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using the Mathematica software package for the case when the
system of equations is linear, i.e., A = B = 0.
3. Results and discussion

In the light of Dinh et al [7], the detachment rate constants, ~k0�,
for trafficking adenoviruses of type 2 in HeLa cells are estimated as
0.5 s�1. The corresponding binding rates, ~k� ¼ 1, are taken to be
equal to 1 s�1 based on [6]. According to [6], typical molecular mo-
tor velocities are ~v� ¼ �1 lm/s; the Einstein relation for a 1 lm
sphere in water gives eD0 ¼ 0:4 lm2/s. Estimations of transport
properties for different types of organelles are also given in Table
1 of [9] and in supplementary material for [12] and are not re-
peated here. A relatively short axon whose length is 20 lm is mod-
eled in this research. This explains the choice of dimensionless
parameter values summarized in Table 1.

Fig. 2a–c displays dimensionless number density concentra-
tions of free particles, n0, particles riding on microtubules toward
the neuron body, n�, and particles riding on microtubules away
from the neuron body, n+. The effect of slowing down the molecu-
lar motor velocity as number density concentration of particles rid-
ing on microtubules increases is investigated. Computations are
performed for B = 0 (the detachment rates from microtubules, k0�,
are assumed to remain constant, independent of organelle concen-
tration) for various values of A (see Eq. (8)). A traffic jam for n+ is
evident in Fig. 2c; it occurs at approximately x = 2.0. The traffic of
organelles toward the axon terminal becomes more jammed as A
increases. This is as expected because larger A corresponds to more
significant slowdown of molecular-motor-assisted transport as
density of the traffic increases. This is similar to the formation of
a cluster of cars in traffic flow [17], with the difference that tradi-
tional traffic flows are essentially unsteady, and clusters of cars
(traffic jams) often form in a homogeneous flow and are highly dy-
namic objects. Traffic jams in the intracellular flow of organelles,
on the contrary, are steady-state objects because of a large time-
scale involved in their formation. As one can see from Table 2, this
traffic jam results in the reduction of the dimensionless flux of
intracellular organelles, j (see Eq. (15)), thus reducing the supply
of proteins to the axon terminal (synapse, see Fig. 1), which even-
tually may lead to a disruption of normal functioning of the
neuron.

Fig. 3a–c is similar to Fig. 2a–c, but it investigates the possible
effect of an organelle-filled axonal swelling (positioned in the re-
gion of 10 6 x 6 11) on organelle transport in axons. The effect of
axonal swelling is modeled by locally increasing the value of con-
stant B in the region occupied by the swelling (see Eqs. (9b) and
(9c)). The traffic jam in the region of axonal swelling,
10 6 x 6 11, is clearly visible. Table 3 shows that this traffic jam re-
sults in reducing the flux of organelles toward axon terminal; the
reduction becomes more significant as B0 increases.

4. Conclusions

This research demonstrates that modified Smith–Simmons
equations are capable of modeling traffic jams in molecular-mo-
tor-assisted transport of intracellular organelles in axons. Two ap-
proaches to modeling traffic jams in axons are discussed
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Fig. 3. Effect of increasing the detachment rate from microtubules (see Eqs. (9a)–
(9c)) on number density concentrations of free particles, n0 (a), particles riding on
microtubules toward the neuron body, n� (b), and particles riding on microtubules
away from the cell body, n+ (c). Computed for A = 0, B is increased locally in the
region 10 < x < 11 (the value of B in this region is set to B0), otherwise B = 0.

Table 3
Effect of the traffic jam due to increased probability of the organelles to fall off the
microtubules on the flux of the organelles toward the axon terminal, computed for
A = 0

B in the region 10 < x < 11 (B = 0 otherwise) j

1 0.0087
10 0.0085
50 0.0073
75 0.0068
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(1) Traffic jam is obtained by assuming that the increase of con-
centration of particles riding on microtubules results in
decreasing the molecular motor velocity; this behavior
may be related to mutations of genes coding the structure
of molecular motors.

(2) It is also shown that traffic jam can be caused by the
assumption that as number density of organelles riding on
microtubules increases, the probability of them falling off
the microtubules and becoming free particles increases.

This is particularly true in the regions occupied by an axonal
swelling, where organelles with attached molecular motors com-
pete for the same limited space close to the microtubule. The effect
of an organelle-filled axonal swelling is modeled by locally increas-
ing the value of constant B in the region occupied by the swelling.
It is shown that traffic jam results in reducing the flux of organelles
toward axon terminal, which may eventually lead to a disruption
of normal functioning of the neuron.
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